Exceptional zeros and L-invariants of Bianchi modular forms

نویسندگان

  • Daniel Barrera Salazar
  • Chris Williams
چکیده

Let f be a Bianchi modular form, that is, an automorphic form for GL2 over an imaginary quadratic field F . In this paper, we prove an exceptional zero conjecture in the case where f is new at a prime above p. More precisely, for each prime p of F above p we prove the existence of an L-invariant Lp, depending only on p and f , such that when the p-adic L-function of f has an exceptional zero at p, its derivative can be related to the classical L-value multiplied by Lp. The proof uses cohomological methods of Darmon and Orton, who proved similar results for GL2/Q. When p is not split and f is the base-change of a classical modular form f̃ , we relate Lp to the L-invariant of f̃ , resolving a conjecture of Trifković in this case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weight Reduction for Mod l Bianchi Modular Forms

LetK be an imaginary quadratic field with class number one. We prove that mod l, a system of Hecke eigenvalues occurring in the first cohomology group of some congruence subgroup Γ of SL2(ØK) can be realized, up to twist, in the first cohomology with trivial coefficients after increasing the level of Γ by (l). 1. Motivation and Summary Let G be a connected semisimple algebraic group defined ove...

متن کامل

A Relation between the Zeros of Different Two L-functions Which Have the Euler Product and Functional Equation

As automorphic L-functions or Artin L-functions, several classes of Lfunctions have Euler products and functional equations. In this paper we study the zeros of L-functions which have the Euler products and functional equations. We show that there exists some relation between the zeros of the Riemann zetafunction and the zeros of such L-functions. As a special case of our results, we find the r...

متن کامل

Teitelbaum’s exceptional zero conjecture in the anticyclotomic setting

In [Tei], Teitelbaum formulates a conjecture relating first derivatives of the Mazur– Swinnerton-Dyer p-adic L-functions attached to a modular forms of even weight k ≥ 2 to certain L-invariants arising from Shimura curve parametrisations. This article formulates an analogue of Teitelbaum’s conjecture in which the cyclotomic Zp extension of Q is replaced by the anticyclotomic Zp-extension of an ...

متن کامل

ON MODULAR MOD l GALOIS REPRESENTATIONS WITH EXCEPTIONAL

We give a parametrization of the possible Serre invariants (N, k, ν) of modular mod ℓ Galois representations of the exceptional types A 4 , S 4 , A 5 , in terms of local data attached to the fields cut out by the associated projective representations. We show how this result combined with certain global considerations leads to an effective procedure that will determine for a given eigenform f a...

متن کامل

Interlacing of Zeros of Weakly Holomorphic Modular Forms

We prove that the zeros of a family of extremal modular forms interlace, settling a question of Nozaki. Additionally, we show that the zeros of almost all forms in a basis for the space of weakly holomorphic modular forms of weight k for SL2(Z) interlace on most of the lower boundary of the fundamental domain.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017